
2318
IEICE TRANS. FUNDAMENTALS, VOL.E82–A, NO.11 NOVEMBER 1999

PAPER Special Section on VLSI Design and CAD Algorithms

Improving Dictionary-Based Code Compression in VLIW

Architectures

Sang-Joon NAM†, In-Cheol PARK†, and Chong-Min KYUNG†, Nonmembers

SUMMARY Reducing code size is crucial in embedded sys-
tems as well as in high-performance systems to overcome the
communication bottleneck between memory and CPU, especially
with VLIW (Very Long Instruction Word) processors that require
a high-bandwidth instruction prefetching. This paper presents a
new approach for dictionary-based code compression in VLIW
processor-based systems using isomorphism among instruction
words. After we divide instruction words into two groups, one
for opcode group and the other for operand group, the proposed
compression algorithm is applied to each group for maximal code
compression. Frequently-used instruction words are extracted
from the original code to be mapped into two dictionaries, an
opcode dictionary and an operand dictionary. According to the
SPEC95 benchmarks, the proposed technique has achieved an av-
erage code compression ratio of 63%, 69%, and 71% in a 4-issue,
8-issue, and 12-issue VLIW architecture, respectively.
key words: code compression, VLIW architecture

1. Introduction

In VLIW (Very Long Instruction Word) architectures
where a high-bandwidth instruction prefetch mecha-
nism is required to supply multiple operations per cy-
cle, reducing the code size is crucial to overcome the
communication bottleneck between memory and CPU.
Moreover, code size becomes a very important issue in
VLIW processors used in embedded systems as well as
in high-performance systems [1].

Since the cost of an integrated circuit is more than
linearly proportional to the die size, reducing the pro-
gram size that directly implies cost reduction is very
crucial in processor-based embedded systems. As the
complexity of embedded systems grows, programming
in assembly language followed by optimization by hand
is no longer deemed practical, except for time-critical
portions of the program. Recent statistics indicate that
high-level languages such as C are gradually replacing
assembly language as a programming language, because
using high-level languages greatly lowers the cost of de-
velopment and maintenance of embedded system. How-
ever, as the programming in high-level language can in-
cur a penalty in code size, securing a means to compress
the instruction code becomes extremely important.

Several dictionary-based code compression schemes

Manuscript received March 15, 1999.
Manuscript revised May 31, 1999.

†The authors are with the Department of Electrical En-
gineering, Korea Advanced Institute of Science and Tech-
nology, 373–1, Kusong-dong, Yusong-gu, Taejon, 305–701,
Korea.

have been proposed to enhance the code compression
ratio in the embedded systems. Liao [2] proposed a soft-
ware method for supporting code compression using the
mini-subroutine which is a procedure call representing a
common sequence of instructions in the DSP program.
Each instance of a mini-subroutine is removed from the
program and replaced by a call-dictionary instruction,
which increases the overall processing latency. Liao’s
method can reduce the code size by 12% on average.

While Liao used a fixed-length call-dictionary in-
struction as an index into the dictionary table, Le-
furgy [3] has used a variable-lengthcodeword which im-
proves the dictionary-based code density by 33%. How-
ever, Lefurgy’s method is only applicable to single-issue
processors and limited to the exactly identical instruc-
tions. Two instruction words are denoted as identical if
their opcodes and their operands are exactly the same.

In another scheme based on the object code com-
pression proposed by Yoshida [4], a lookup method
based on ROM table is used to recover the original ob-
ject code from each compressed object code (pseudo-
code). The code compression ratio achieved by this
approach is 62.5% on average. However, this scheme
is only applicable to single-issue processors and suffers
from the large object transformation table having thou-
sands of entries which results in long table-lookup la-
tency.

Ishiura [5] has converted the problem of finding a
good instruction encoding for code compression to the
problem of instruction field partitioning in VLIW archi-
tectures. Because the instruction encoding depends on
the analysis of compiled code and field partitioning, de-
coder and control unit can be implemented only after
the implementation of system software. This scheme
reduces the code size to 46 ∼ 60%, but the decoding
through the table lookup operation is rather complex
and slow.

In this paper, we propose a new technique to re-
duce the code size in VLIW processor-based systems.
The proposed approach is based on the dictionary-
based code compression but we extend the concept by
employing the so-called isomorphism among instruction
words. Isomorphic instruction words are those having
the same opcode with slightly different set of operands,
or the same set of operands with different opcodes.
Compared to Ishiura’s method which is applied to the
full set of instructions, our method is applied only to



NAM et al: IMPROVING DICTIONARY-BASED CODE COMPRESSION IN VLIW ARCHITECTURES
2319

Fig. 1 Compression using identical instruction words.

frequently-used instructions. We extract isomorphic in-
struction words as well as identical instruction words
that are frequently used in the program and store their
opcodes and operands into two dictionaries as a com-
pressed form. They are determined after the analysis
of compiled code, but do not change the instruction
encoding which results in simple decoding and table
lookup operation. As the compressed instruction words
are fetched, they are dynamically decompressed by re-
ferring to the two dictionaries. We present a technique
using the dictionary-based code compression as a good
trade-off between code compression ratio and decoding
delay.

The organization of this paper is as follows. Sec-
tion 2 explains the code compression schemes using
identical or isomorphic instruction words. In Sect. 3,
we describe the proposed compression algorithm using
isomorphism among instruction words. Experimental
results using various machine configurations are shown
in Sect. 4.

2. Code Compression Using Instruction
Isomorphism

A compressed form of an original code can be repre-
sented by a dictionary and a codeword. The dictionary
contains instruction words frequently used in the orig-
inal code and is accessed at the time of program exe-
cution to expand the accessed codeword into the cor-
responding uncompressed instruction word. The code-
word is a symbol pointing to an entry of the dictionary,
and replaces the instruction word to be compressed. In
other words, the instruction words frequently used are
extracted and stored in the dictionary and the occur-
rence of these instruction words is replaced by a code-
word.

The instruction words frequently used can be clas-
sified into two groups: identical instruction words and
isomorphic instruction words. But, identical instruc-
tion words are rarely found in VLIW processors, be-
cause an instruction word consists of multiple opera-
tions. Figure 1 illustrates the relationship between the
uncompressed code, the compressed code, and the dic-
tionary with assuming a 4-issue processor. Instruction
word t + 2 is the same as instruction word t except
for the operands in the first operation. So, instruction
word t + 2 is represented by another “CODEWORD
#2” pointing to the second entry in the dictionary, re-
sulting in an increase of the dictionary size. Again, in-
struction word t + 5 is represented by “CODEWORD
#3”, although it is similar to instruction word t + 2
except the “mul” operation.

Therefore, to increase the access frequency of the
dictionary and enhance the code compression ratio, we
use the isomorphism among instruction words. To sup-
port isomorphism among instruction words, we clas-
sify instruction words into two groups, an opcode group
and an operand group. Figure 2 shows how the isomor-
phism is applied to instruction words. In this scheme,
the isomorphism among instruction word t, t + 2, and
t + 5 is detected and represented by a codeword. As
we find more isomorphism relations, the total code size
becomes smaller than that in Fig. 1.

While one dictionary is enough for compress-
ing identical instruction words, two dictionaries (op-
code dictionary and operand dictionary) are used in
this scheme as shown in Fig. 3. Opcode words and
operand words assigned by the compression algorithm
are used as the indices of the opcode dictionary and
operand dictionary, respectively. The decoder checks
the incoming instruction words to determine whether
they are compressed or not. For an uncompressed in-



2320
IEICE TRANS. FUNDAMENTALS, VOL.E82–A, NO.11 NOVEMBER 1999

Fig. 2 Compression using isomorphic instruction words.

Fig. 3 Instruction fetch path in the proposed code compression
scheme for VLIW processor-based systems.

struction word, it proceeds in a conventional fashion
through the upper path. When the decoder encounters
a compressed instruction word, it is recovered to the un-
compressed one through the lower path by retrieving
the original opcodes and operands concurrently from
the corresponding entries of the dictionaries pointed to
by the opcode word and the operand word. Then the
uncompressed instruction word is issued to the func-
tional units.

To reduce the latency due to the extra table
lookup, we can store predecoded control information
in the dictionaries rather than the plain uncompressed
opcodes and operands. Using this predecoded informa-
tion, we can save one decoding cycle for compressed
instruction words and make up for the cycle needed
to lookup the dictionaries, but this method requires a
large ROM table. The predecoded information is sim-
ilar to microcode and hence its length is determined
by implementation details. In our implementation, to
make the table lookup operation simple and to min-
imize the additional latency due to this lookup, the

length of opcode word and the operand word is fixed
to enable them to be directly used as the indices of the
dictionaries.

3. Compression Algorithm for Instruction
Isomorphism

A dictionary-based compression algorithm is applied af-
ter a compiler has generated a program. We search
the program to find the isomorphic instruction words
frequently used, and their opcodes and operands are
placed in the opcode dictionary and operand dictionary,
respectively. Our algorithm has 2 steps as follows.

1. Building entries of two dictionaries
2. Replacing instruction words with the opcode words

and operand words

3.1 Building Entries of Two Dictionaries

Building a dictionary that can achieve maximum com-
pression is known as an NP-complete problem [6]. Most
previous dictionary methods for compressing instruc-
tion sequences use greedy algorithms to quickly deter-
mine the dictionary entries. After the usage frequency
of each instruction word is examined, an entry in the
dictionary is allocated for the instruction word if the
instruction sequence has a high probability of occur-
rence. The allocation is governed by the constraints
such as the maximum number of entries in each dictio-
nary, threshold of frequency and the encoding scheme
for codewords. However, these methods do not allow
branching into the interior of an instruction sequence
pointed to by a codeword.



NAM et al: IMPROVING DICTIONARY-BASED CODE COMPRESSION IN VLIW ARCHITECTURES
2321

But, our code compression scheme replaces an
instruction word by an opcode wordand an ope-
rand word, and limits their total bit-width to be the
same as that ofan normal operation. Thus, the max-
imum compression problem is changed from an NP-
complete problem to a simple greedy one. First, we
determine whether two instruction words are isomor-
phic. If they are isomorphic, we regard the correspond-
ing opcode word and operand word as candidate en-
tries for two dictionaries. In this procedure, if the
opcode group or the operand group of the isomorphic
instruction words already has the candidate entry, its
frequency is incremented. After making the candidate
entry set, the gain of each element in candidate opcode
set is calculated and elements are sorted in an increas-
ing order. Finally, the number of dictionary entries and
total code size are constrained by the given maximum
number of dictionary entries. The whole selection algo-
rithm for isomorphic instruction words in the proposed
scheme is presented as a pseudo code in Fig. 4.

Moreover, since operations stored in an entry of a
dictionary are for one instruction word and should be
issued concurrently, there is no problem on the branch-
ing in our code compression scheme.

3.2 Replacing Instruction Words With the
opcode words and operand words

The occurrence of each opcode and operand in the en-
try of two dictionaries is simply represented by a fixed-
length opcode word and a fixed-length operand word.
Specifically, the total bit width as required for the op-
code word and operand word is made equal to that
of an uncompressed operation in order to align the
compressed instruction words with the cache bound-
ary. This can result in worse compression than a
variable-length opcode word and operand word encod-

Fig. 4 Algorithm for selecting isomorphic instruction words.

ing, but makes instruction-fetching and decoding mech-
anism simple and fast. In general, variable-length en-
codings such as Huffman encoding are expensive to de-
code [7]. A fixed-length encoding, on the other hand,
can be used directly as an index into the dictionary,
making the table lookup operation simple.

4. Experimental Results

The experimental environment used in our work con-
sists of the SHADE tool [8], instruction scheduling tool
and the trace-driven simulator for VLIW processor
based on the SPARC architecture [9], allowing vari-
ous machine parameters and machine configurations as
shown in Fig. 5. Three versions of the machine con-
figuration classified by the issue rate and the number
of functional units are summarized in Table 1. Eight
SPEC95 benchmarks (099.go, 132.ijpeg, 134.perl, and
147.vortex from SPECint95, and 103.su2cor, 104.hy-
dro2d, 107.mgrid, and 110.applu from SPECfp95) are
used to evaluate the effect of each machine configura-
tion on the code compression ratio.

4.1 Comparison of Compression Ratio

For each machine configuration, Figs. 6–13 compare the

Fig. 5 Experimental environment consisting of the SHADE
tool, instruction scheduling tool and VLIW trace-driven simu-
lator.

Table 1 Issue rate and number of functional units in machine
configuration: PI4, PI8, and PI12.

Feature PI4 PI8 PI12
model model model

Issue rate 4 8 12
Fixed-point units 4 8 12
Floating-point units 2 3 4



2322
IEICE TRANS. FUNDAMENTALS, VOL.E82–A, NO.11 NOVEMBER 1999

code compression ratio of two schemes, (a) identical in-
struction words and (b) isomorphic instruction words.
In the comparison, we have assumed for fair comparison
that NOP’s (No OPerations) which are usually padded
for fixed-length instruction words in the conventional
VLIW architectures are removed from the original pro-
grams and that there is no limitation to the size of
dictionaries. The code compression ratio is defined as
the total size of memory and the dictionaries divided by
the size of the original memory. Simulation results show

Fig. 6 Comparison of code compression ratio in go.

Fig. 7 Comparison of code compression ratio in ijpeg.

Fig. 8 Comparison of code compression ratio in perl.

that the average code compression ratio of the scheme
based on isomorphic instruction words is 63%, 69%,
and 71% in PI4, PI8, and PI12, respectively and our
scheme is a good trade-off between code compression
ratio and decoding delay. For each benchmarks, iso-
morphic instruction words improve the code compres-
sion ratio significantly over identical instruction words
by over 17%.

Fig. 9 Comparison of code compression ratio in vortex.

Fig. 10 Comparison of code compression ratio in su2cor.

Fig. 11 Comparison of code compression ratio in hydro2d.



NAM et al: IMPROVING DICTIONARY-BASED CODE COMPRESSION IN VLIW ARCHITECTURES
2323

Table 2 Comparison of maximum number of entries and total size in each dictionary
when isomorphism method is used.

Program Model Opcode Operand Total
entry size (bit) entry size (bit) size (bit)

PI4 1179 39797 171 11499 51296
go PI8 1576 64565 208 16405 80970

PI12 1654 72096 238 19691 91787
PI4 764 24437 108 6954 31392

ijpeg PI8 754 27147 100 6933 34080
PI12 763 28779 102 7360 36139
PI4 926 29515 134 8576 38091

perl PI8 869 30293 127 8555 38848
PI12 839 30123 122 8661 38784
PI4 958 32064 131 8725 40789

vortex PI8 1131 48213 163 13760 61973
PI12 1157 53312 160 14891 68203
PI4 595 18037 69 4096 22133

su2cor PI8 517 16971 60 3904 20875
PI12 514 17067 63 4117 21184
PI4 529 16000 59 3435 19435

hydro2d PI8 464 15467 59 4011 19478
PI12 453 15541 60 3947 19488
PI4 485 14773 56 3307 18080

mgrid PI8 458 15531 54 3584 19115
PI12 451 15403 60 3819 19222
PI4 826 26272 93 5995 32267

applu PI8 858 31680 93 6656 38336
PI12 866 33323 100 7509 40832

Fig. 12 Comparison of code compression ratio in mgrid.

Fig. 13 Comparison of code compression ratio in applu.

Fig. 14 Effect of number of opcode dictionary entries on com-
pression ratio in vortex.

4.2 Size of Dictionaries and Access Frequency

Actually, the code compression ratio is greatly affected
by the number of dictionary entries available and the
frequencies of appearance of each instruction word. Our
next experiments vary the number of dictionary entries
available. Figure 14 shows the effect of varying the
number of opcode dictionary entries on compression ra-
tio of 147.vortex benchmark using isomorphic instruc-
tion words in PI4, PI8, and PI12, respectively. The
compression ratio at 1024 entries of opcode dictionary
is similar to that at infinite entries. We can see the
same phenomena from results in other benchmarks.

Since the simulation results show that the maxi-



2324
IEICE TRANS. FUNDAMENTALS, VOL.E82–A, NO.11 NOVEMBER 1999

mum number of dictionary entries is smaller than that
of [4], we assumed all entries needed to accommodate
all isomorphic instruction words are available in the
dictionary as shown in Table 2.

5. Conclusions

We have proposed a new code compression method in
VLIW processor-based systems. The method is based
on the isomorphism between instruction words in the
dictionary-based code compression. After the analysis
of a given instruction word stream, frequently-used iso-
morphic instruction words are extracted. Each occur-
rence of these extracted instruction words is replaced by
an operand word and an operand word, which are used
as the indices of the opcode dictionary and operand
dictionary, respectively.

For the SPEC95 benchmarks, the simulation re-
sults show that the code compression ratio is 63%, 69%,
and 71% on the average in PI4, PI8, and PI12, respec-
tively and our scheme is a good trade-off between code
compression ratio and decoding delay. Moreover, iso-
morphic instruction words improve the code compres-
sion ratio significantly over identical instruction words
by over 17%.

References

[1] “TMS320C62xx CPU and Instruction Set: Reference
Guide,” Texas Instruments, Jan. 1997.

[2] S. Liao, S. Devadas, and K. Keutzer, “Code density optimiza-
tion for embedded DSP processors using data compression
techniques,” Advanced Research in VLSI, 1995.

[3] C. Lefurgy, P. Bird, I.C. Chen, and T. Mudge, “Improv-
ing code density using compression techniques,” Proc. the
30th Annual International Symposium on Microarchitecture,
pp.194–203, Dec. 1997.

[4] Y. Yoshida, B.Y. Song, H. Okuhara, T. Onoye, and I. Shi-
rakawa, “An object code compression approach to embedded
processors,” International Symposium on Low Power Elec-
tronics and Design, pp.265–268, Aug. 1997.

[5] N. Ishiura and M. Yamaguchi, “Instruction code compression
for application specific VLIW processors based on automatic
Field Partitioning,” Proc. the Workshop on Synthesis and
System Integration of Mixed Technologies, pp.105–109, Dec.
1997.

[6] J. Storer, “NP-completeness results concerning data com-
pression,” Technical Report 234, Department of Electrical
Engineering and Computer Science, Princeton University,
1977.

[7] D.A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proc. IRE, vol.4D, pp.1091–1101, Sept.
1952.

[8] Sun Microsystems Laboratories, SHADE User’s Manual,
Feb. 1993.

[9] D.L. Weaver and T. Germond, The SPARC Architecture
Manual, Prentice-Hall, Inc., 1994.

[10] D. Liu and C. Svensson, “Power consumption estimation in
CMOS VLSI chips,” IEEE J. Solid-State Circuits, pp.663–
670, June 1994.

Sang-Joon Nam received the B.S.
and M.S. degrees in Electrical Engineer-
ing from KAIST (Korea Advanced Insti-
tude of Science and Technology), Korea
in 1993 and 1995, respectively. He is cur-
rently pursuing the Ph.D. degree in Elec-
trical Engineering in KAIST. His current
research interests include multiple-issue
microprocessor design, multimedia VLSI
design and verification methodology.

In-Cheol Park received the B.S. de-
gree in Electrical Engineering from Seoul
National University in 1986, the M.S. and
Ph.D. degrees in Electrical Engineering
from KAIST (Korea Advanced Institude
of Science and Technology), in 1988 and
1992, respectively. From May 1995 to
May 1996, he worked at IBM T.J. Watson
Research Center, Yorktown, New York as
a postdoctoral member of the technical
staff in the area of circuit design. He

joined KAIST in June 1996 as an Assistant Professor in the De-
partment of Electrical Engineering. His current research interests
include CAD algorithms for high-level synthesis and VLSI archi-
tectures for general-purpose microprocessors.

Chong-Min Kyung received the B.S.
degree in Electronic Engineering from
Seoul National University, Korea in 1975,
and the M.S. and Ph.D. degree in electri-
cal engineering from KAIST (Korea Ad-
vanced Institude of Science and Technol-
ogy), Korea in 1977 and 1981, respec-
tively. After graduation from KAIST, he
worked at AT&T Bell Laboratories, Mur-
ray Hill, NJ, from April 1981 to January
1983 in the area of semiconductor device

and process simulation. In February 1983, he joined the De-
partment of Electrical Engineering at KAIST, where he is now
a Professor. His current research interests include microproces-
sor/DSP architecture, chip design and verification methodology.
He is Director of the IDEC (Integrated Circuit Design Educa-
tion Center) established to promote the VLSI design education
in Korean universities through CAD environment setup, chip fab-
rication services, and providing various educational materials and
media related with integrated circuits and systems design.


